Extreme Gravitational Lensing near Rotating Black Holes

نویسنده

  • Kris Beckwith
چکیده

We describe a new approach to calculating photon trajectories and gravitational lensing effects in the strong gravitational field of the Kerr black hole. These techniques are applied to explore both the imaging and spectral properties of photons that perform multiple orbits of the central mass before escaping to infinity. Viewed at large inclinations, these higher order photons contribute ∼ 20% of the total luminosity of the system for a Schwarzschild hole, whilst for an extreme Kerr black hole this fraction rises to ∼ 60%. In more realistic models these photons will be re-absorbed by the disc at large distances from the hole, but this returning radiation could provide a physical mechanism to resolve the discrepancy between the predicted and observed optical/UV colours in AGN. Conversely, at low inclinations, higher order images re-intercept the disc plane close to the black hole, so need not be absorbed by the disc if this is within the plunging region. These photons form a bright ring carrying approximately 10% of the total disc luminosity for a Schwarzchild black hole. The spatial separation between the inner edge of the disc and the ring is similar to the size of the event horizon. This is resolvable for supermassive black holes with proposed X-ray interferometery missions such as MAXIM, so has the potential to provide an observational test of strong field gravity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme gravitational lensing by supermassive black holes

— Extreme gravitational lensing refers to the bending of photon trajectories that pass very close to supermassive black holes and that cannot be described in the conventional weak deflection limit. A complete analytical description of the whole expected phenomenology has been achieved in the recent years using the strong deflection limit. These progresses and possible directions for new investi...

متن کامل

Conformal Invariance and Near-Extreme Rotating AdS Black Holes

We obtain retarded Green’s functions for massless scalar fields in the background of near-extreme, nearhorizon rotating charged black holes of five-dimensional minimal gauged supergravity. The radial part of the (separable) massless Klein-Gordon equation in such general black hole backgrounds is Heun’s equation, due to the singularity structure associated with the three black hole horizons. On ...

متن کامل

Reflected Iron Line From a Source Above a Kerr Black Hole Accretion Disc

In this paper we present a fully relativistic approach to modelling both the continuum emission and the reflected fluorescent iron line from a primary X-ray source near a Kerr black hole. The X-ray source is located above an accretion disc orbiting around the black hole. The source is assumed to be a static point source located on an arbitrary position above the disc, on or off the axis of rota...

متن کامل

Hawking Radiation from Rotating Black Holes and Gravitational Anomalies

We study the Hawking radiation from Rotating black holes from gravitational anomalies point of view. First, we show that the scalar field theory near the Kerr black hole horizon can be reduced to the 2-dimensional effective theory. Then, following Robinson and Wilczek, we derive the Hawking flux by requiring the cancellation of gravitational anomalies. We also apply this method to Hawking radia...

متن کامل

Probing General Relativity With Mergers of Supermassive and Intermediate-Mass Black Holes

Recent observations and stellar dynamics simulations suggest that ∼ 10M⊙ black holes can form in compact massive young star clusters. Any such clusters in the bulge of their host galaxy will spiral to the center within a few hundred million years, where their intermediate-mass black holes are likely to merge eventually with the galaxy’s supermassive black hole. If such mergers are common, then ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004